PRODUÇÃO E AVALIAÇÃO DE BIOPEPTÍDEOS A PARTIR DE HIDROLISADOS DE CORVINA (*Micropogonias furnieri*)¹

Daiane Felix Reis²; Graciela Salete Centenaro³, Myriam de las Mercedes Salas Mellado⁴

Introdução

Antioxidantes sintéticos como o butilhidroxianisol (BHA) e o butilhidroxitolueno (BHT) são normalmente utilizados na indústria e podem causar efeitos nocivos em animais. Nos últimos anos há a preocupação de se obter substâncias naturais que tenham a mesma função e eficiência dos antioxidantes sintéticos (PASSOTO et al.,1997).

Além das propriedades funcionais, tecnológicas e nutricionais, algumas proteínas podem apresentar atividade biológica, uma delas é a atividade antioxidante, que pode estar associada aos peptídeos bioativos presentes em determinadas seqüências da proteína, liberados após a hidrólise enzimática.

Jae-Young Je *et al.* (2007), isolaram e identificaram peptídeos com atividade antioxidante provenientes de hidrolisados protéicos de atum, usando enzimas para obtenção dos hidrolisados protéicos.

O objetivo deste trabalho é obter diferentes hidrolisados enzimáticos, medir seu poder antioxidante e comparar este efeito entre os hidrolisados obtidos.

Metodologia

A matéria-prima utilizada para a obtenção dos hidrolisados foi o músculo de corvina (*Micropogonias furnieri*) doado pela Pescal Indústria de Pescados S.A. A composição proximal da Corvina foi determinada conforme AOAC (2000).

Obtiveram-se os hidrolisados utilizando as enzimas Alcalase e Flavourzyme, fornecidas pela Novozymes Latin América Ltda.

As reações enzimáticas foram realizadas com volume total de 400 mL em reator encamisado de vidro utilizando agitador de eixo-hélice a 400 rpm a 50°C durante 60 minutos. Após o término da reação, a enzima foi inativada termicamente a 95°C durante 15 minutos conforme Centenaro e Mellado (2008).

As condições de hidrólise das enzimas Alcalase (pH 8,0; temperatura de 50°C e tempo de 4 horas) e Flavourzyme (pH 7,0; temperatura de 50°C e tempo de 4 horas) foram definidas após levantamento bibliográfico. Foi definido também a proporção de enzima-substrato (1%,2% e 3% para cada enzima).

A atividade antioxidante foi avaliada através do método do efeito sequestrante do radical livre 1,1-difenil-2-picrilidrazil (DPPH), de acordo com a metodologia descrita por Wu e Chen *et al.*(2003).

Resultados e Discussão

¹Projeto: Produção e avaliação de biopeptídeos a partir de hidrolisados de corvina. Financiado pelo Cnpq.

²Estudante do Curso de Engenharia de Alimentos da Universidade Federal do Rio Grande; E-mail: daianereis@furg.br

³Doutoranda do Curso de Engenharia e Ciência de Alimentos da Universidade Federal do Rio Grande; E-mail: gracentenaro@yahoo.com.br

⁴Professora Doutora da Universidade Federal do Rio Grande; E-mail: mysame@yahoo.com.

A figura 1 mostra o efeito sequestrante dos hidrolisados da Corvina. Obtiveramse hidrolisados com diferentes graus de hidrólise que foram aumentando em relação a proporção enzima-substrato.

As hidrólises realizadas com a enzima Flavourzyme apresentaram maior capacidade para quelar o radical DPPH do que com a enzima Alcalase. Dentre os hidrolisados obtidos com a Alcalase, a concentração de enzima-substrato de 2% apresentou maior capacidade de seqüestrar o radical DPPH, da mesma forma ocorreu com os hidrolisados obtidos com a Flavourzyme, que na concentração enzima-substrato de 2% também apresentou o maior efeito sequestrante.

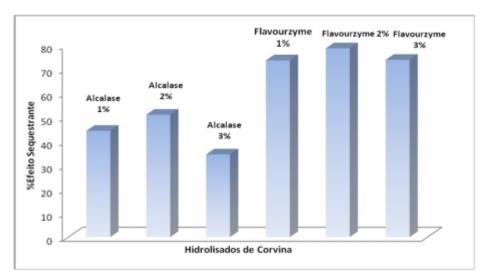


Figura 1: Efeito sequestrante do radical livre DPPH dos hidrolisados de corvina em diferentes concentrações de enzima-substrato

Conclusões

O estudo evidenciou que foi possível obter os hidrolisados de Corvina em diferentes concentrações de enzima-substrato, e que esses hidrolisados apresentaram atividade antioxidante. Os hidrolisados de Corvina obtidos com a enzima Flavourzyme possuem maior capacidade de quelar o radical livre DPPH quando comparados com os da enzima Alcalase.

Agradecimentos

Ao CNPq pela bolsa de Iniciação Científica.

Referências

AOAC. OFFICIAL METHODS OF ANALYSIS OF AOAC INTERNACIONAL. v. 2, 17. ed. Gaithersburg – EUA: **AOAC**, 2000.

CENTENARO, G. S., MELLADO, M. S. Influência das concentrações de enzima e de substrato no grau de hidrólise e no conteúdo protéico de hidrolisados enzimáticos de corvina. **Boletim do Ceppa**, 2008, v. 26, n. 1, p. 61-70.

JAE-YOUNG JE A, ZHONG-JI QIAN A, HEE-GUK BYUN B, SE-KWON KIM, Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis, 2007, **Process Biochemistry** 42 (2007) p.840–846.

PASSOTO, J.A., PENTEADO M.V.C., FILHO-MANCINI J. Atividade antioxidante do - caroteno e vitamina A. Estudo comparativo com antioxidante sintético. **Ciência e Tecnologia de Alimentos**. v. 18 (1).p. 2, 1998.

WU, C.,H., CHEN, H.M., SHIAU, C. Y.; Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). **Food Research International**, 36, 2003, p. 949-957